Formulación y Nomenclatura de

Química Inorgánica

Recomendaciones de la IUPAC de 2005
Índice

1 **Introducción.** .. 3

2 **Sustancias elementales o simples.** .. 4

3 **Compuestos binarios.** .. 5
 3.1. Nomenclatura de composición o estequiométrica.................................. 5
 - Nomenclatura basada en el uso de prefijos multiplicadores.................. 6
 - Nomenclatura basada en el uso del número de oxidación (sistema de Stock). 7
 3.2. Combinaciones binarias del hidrógeno. ... 8
 - Combinaciones del hidrógeno con los metales. 8
 - Combinaciones del hidrógeno con los no-metales. 8
 - Combinaciones del hidrógeno con los no metales de los grupos 13, 14 y 15. 8
 - Hidróxidos. .. 9
 3.3. Combinaciones binarias del oxígeno. .. 10
 - Óxidos. .. 10
 - Peróxidos. ... 11
 3.4. Otras combinaciones binarias. .. 12
 - Combinaciones de metal con no metal (sales binarias). 12
 - Combinaciones de no metal con no metal. ... 12

4 **Hidróxidos.** .. 13

5 **Oxoácidos.** .. 14
 - Nomenclatura común o clásica. ... 14
 - Nomenclatura de hidrógeno. ... 17

6 **Iones.** ... 18
 - Cationes monoatómicos. ... 18
 - Cationes homopoliatómicos. ... 19
 - Cationes heteropoliatómicos obtenidos al añadir un H⁺ a los hidruros “padres”. 19
 - Aniones monoatómicos. ... 19
 - Aniones homopoliatómicos. .. 20
 - Aniones derivados de oxoácidos. ... 20

7 **Oxisales.** .. 22
 - Nomenclatura común o clásica. .. 22
 - Nomenclatura de composición o estequiométrica. 23

8 **Salesácidas.** ... 23
 8.1. Oxisalesácidas. ... 23
 - Nomenclatura común o clásica. ... 23
 - Nomenclatura estequiométrica. ... 24
 8.2. Salesácidas de los hidrácidos. ... 25

9 **Anexos.** .. 26
 - Tiópicidos y derivados ... 26
 - Números de oxidación. .. 27
 - Oxoácidos. ... 28
1. Introducción.

La revisión de la nomenclatura es un proceso continuo, ya que los nuevos descubrimientos exigen la actualización de los sistemas de nomenclatura. La IUPAC estudia todos los aspectos de la nomenclatura de las sustancias inorgánicas y otras, recomendando los usos más aconsejables para escribir fórmulas y generar nombres.

En el desarrollo de la nomenclatura química han surgido varios sistemas para la construcción de los nombres de los elementos y compuestos químicos. Cada uno de ellos tiene su propia lógica inherente y su conjunto de reglas.

Algunos sistemas son de aplicación general; en cambio, otros han surgido de la necesidad de usar sistemas más especializados en áreas determinadas de la química.

En concreto, en lo referente a la química inorgánica, tres son los sistemas principales de nomenclatura: la nomenclatura de composición, la de sustitución y la de adición.

La nomenclatura de adición es quizás la que puede usarse de forma más generalizada en química inorgánica. La nomenclatura de sustitución puede usarse en determinadas áreas. Sin embargo estos dos sistemas requieren el conocimiento de la estructura de las especies químicas que van a ser nombradas. En cambio, la nomenclatura de composición puede usarse cuando no es necesario aportar información sobre la estructura de las sustancias, o no se conoce, y sólo se indica la estequiometría o composición, por ello será esta nomenclatura sistemática la que aprenderemos durante este curso, además de la tradicional.

Nomenclatura de composición.

Esta nomenclatura está basada en la composición no en la estructura. Por ello, puede ser la única forma de nombrar un compuesto si no se dispone de información estructural.

El tipo de nombre de composición más sencillo es un nombre estequiométrico, por ello a este tipo de nomenclatura también se le llama estequiométrica. En ella se indica la proporción de los constituyentes a partir de la fórmula empírica o la molecular. La proporción de los elementos o constituyentes puede indicarse de varias formas:

- Usando prefijos multiplicadores (mono-, di-, tri-, etc...).
- Usando el número de oxidación de los elementos (sistema de Stock, mediante números romanos).
- Usando el número de carga de los iones (mediante los números de Ewens-Basset, números arábigos seguido del signo correspondiente).
2. Sustancias elementales o simples.

Los nombres sistemáticos están basados en la indicación del número de átomos en la molécula; para ello se utilizan los prefijos multiplicativos recogidos en la tabla IV de las recomendaciones de 2005 de la IUPAC sobre nomenclatura de química inorgánica (*Libro Rojo*) que se reproduce a continuación:

<table>
<thead>
<tr>
<th>Número</th>
<th>Prefijo</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mono</td>
<td>21</td>
<td>henicosa</td>
</tr>
<tr>
<td>2</td>
<td>di² (bis³)</td>
<td>22</td>
<td>docosa</td>
</tr>
<tr>
<td>3</td>
<td>tri (tris)</td>
<td>23</td>
<td>tricosa</td>
</tr>
<tr>
<td>4</td>
<td>tetra (tetrakis)</td>
<td>30</td>
<td>triaconta</td>
</tr>
<tr>
<td>5</td>
<td>penta (pentakis)</td>
<td>31</td>
<td>hentriaconta</td>
</tr>
<tr>
<td>6</td>
<td>hexa (hexakis)</td>
<td>35</td>
<td>pentatriaconta</td>
</tr>
<tr>
<td>7</td>
<td>hepta (heptakis)</td>
<td>40</td>
<td>tetraconta</td>
</tr>
<tr>
<td>8</td>
<td>octa (octakis)</td>
<td>48</td>
<td>octatraconta</td>
</tr>
<tr>
<td>9</td>
<td>nona (nonakis)</td>
<td>50</td>
<td>pentaconta</td>
</tr>
<tr>
<td>10</td>
<td>deca (decakis)</td>
<td>52</td>
<td>dopentaconta</td>
</tr>
<tr>
<td>11</td>
<td>undeca</td>
<td>60</td>
<td>hexaconta</td>
</tr>
<tr>
<td>12</td>
<td>dodeca</td>
<td>70</td>
<td>heptaconta</td>
</tr>
<tr>
<td>13</td>
<td>trideca</td>
<td>80</td>
<td>octaconta</td>
</tr>
<tr>
<td>14</td>
<td>tetradeca</td>
<td>90</td>
<td>nonaconta</td>
</tr>
<tr>
<td>15</td>
<td>pentadeca</td>
<td>100</td>
<td>hecta</td>
</tr>
<tr>
<td>16</td>
<td>hexadeca</td>
<td>200</td>
<td>dicta</td>
</tr>
<tr>
<td>17</td>
<td>heptadeca</td>
<td>500</td>
<td>pentaconta</td>
</tr>
<tr>
<td>18</td>
<td>octadeca</td>
<td>1000</td>
<td>kilia</td>
</tr>
<tr>
<td>19</td>
<td>nonadeca</td>
<td>2000</td>
<td>dilia</td>
</tr>
<tr>
<td>20</td>
<td>icosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El prefijo “mono-” se usa solamente si el elemento no se encuentra habitualmente de forma monoatómica. Por otro lado, si el número de átomos del elemento es grande y desconocido, se puede usar el prefijo “poli-”.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre sistemático</th>
<th>Nombre alternativo aceptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>helio</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>monooxígeno</td>
<td></td>
</tr>
<tr>
<td>O₂</td>
<td>dioxígeno</td>
<td>oxígeno</td>
</tr>
<tr>
<td>O₃</td>
<td>trioxígeno</td>
<td>ozono</td>
</tr>
<tr>
<td>H</td>
<td>monohidrógeno</td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>dihidrógeno</td>
<td></td>
</tr>
<tr>
<td>P₄</td>
<td>tetrafósforo</td>
<td>fósforo blanco</td>
</tr>
<tr>
<td>S₈</td>
<td>octaazufre</td>
<td></td>
</tr>
<tr>
<td>S₆</td>
<td>hexaazufre</td>
<td></td>
</tr>
<tr>
<td>Sₙ</td>
<td>poliazufre</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>mononitrógeno</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>dinitrógeno</td>
<td></td>
</tr>
</tbody>
</table>

*Tradicionalmente se han utilizado los nombres flúor, cloro, bromo, yodo, hidrógeno, nitrógeno y oxígeno, para indicar los compuestos diatómicos que forman estos elementos en la naturaleza y cuyas fórmulas son: F₂, Cl₂, Br₂, I₂, H₂, N₂ y O₂. Su uso está muy extendido.

3. Compuestos binarios.

3.1. Nomenclatura de composición o estequiométrica.

Como su propio nombre indica, los compuestos binarios están formados por dos elementos distintos. En estos casos, para escribir las fórmulas de los compuestos y nombrarlos en los distintos sistemas, hay que tener en cuenta la electronegatividad; así, un elemento será considerado el constituyente electropositivo y el otro el constituyente electronegativo. Para conocer cuál es el elemento más electronegativo y cuál el menos (más electropositivo), se debe utilizar el orden establecido en la tabla VI de las recomendaciones de 2005 de la IUPAC:
El constituyente electronegativo, a efecto de formulación y nomenclatura, será el primero en la secuencia de la tabla VI y, por tanto, el electropositivo el último.

Cuando los constituyentes tienen carga (iones), los cationes son las especies electropositivas y los aniones las electronegativas.

Al formular, se escribe en primer lugar el elemento más electropositivo y a continuación, el más electronegativo. El número de átomos de cada elemento se indica con un subíndice detrás del símbolo correspondiente.

Las diferentes formas de nombrar los compuestos son:

- **Nomenclatura basada en el uso de prefijos multiplicadores.**

 Se nombra, en primer lugar, el elemento más electronegativo; para ello se modifica el nombre del elemento añadiendo el sufijo “-uro” a la raíz del nombre. Seguidamente, tras la palabra “de”, se nombra el elemento menos electronegativo sin modificar.

 Delante del nombre de cada elemento, sin espacios ni guiones, se utilizan los prefijos multiplicativos que indican el número de átomos de cada uno.

 Una excepción a esta regla se produce cuando el oxígeno es el elemento más electronegativo; en este caso, se nombra como “óxido”.

 También se puede señalar el caso del azufre, cuando actúa como elemento más electronegativo, la terminación “-uro” se añade a la raíz latina (*sulphur*), nombrándose como “sulfuro”.
Las vocales finales de los prefijos no deben ser elididas, con la única excepción del prefijo “mono-” cuando precede a “óxido”; así, se suele decir “monóxido” en vez de “monoóxido”.

elemento más electronegativo

Fe₃O₄
tetraóxido de trihierro

elemento menos electronegativo

Cuando no hay ambigüedad en la estequiometría de un compuesto, no es necesario utilizar los prefijos multiplicativos. Esto ocurre cuando se forma un único compuesto entre dos elementos. Además, el prefijo “mono-” es, estrictamente hablando, considerado superfluo y sólo es necesario para recalcar la estequiometría de un compuesto en relación con otros relacionados (para el segundo elemento no se usa).

- **Nomenclatura basada en el uso del número de oxidación, conocida como sistema de Stock.**

 Igual que antes, se nombra el elemento más electronegativo (el que tiene número de oxidación negativo), con el sufijo “-uro”, pero sin prefijos multiplicativos; a continuación, tras la palabra “de”, se nombra el menos electronegativo (el que tiene número de oxidación positivo), indicándose el número de oxidación mediante números romanos entre paréntesis, inmediatamente tras el nombre del elemento.

 elemento más electronegativo

 PCl₅
 Cloruro de fósforo(V)

 elemento menos electronegativo

 número de oxidación del fósforo: +5
Cuando los elementos tienen un único estado de oxidación, no se indica en el nombre del compuesto.

Para escribir la fórmula de un compuesto binario, de manera general, se intercambian los números de oxidación, o las cargas, de los elementos y se colocan como subíndices del otro elemento, simplificándolos cuando sea posible. En la nomenclatura estequiométrica los subíndices coinciden con los prefijos de cantidad.

3.2. Combinaciones binarias del hidrógeno.

- **Combinaciones del hidrógeno con los metales.**

 En estos compuestos, el hidrógeno actúa con número de oxidación -1, sería el elemento más electronegativo, y el metal con alguno de sus números de oxidación positivo.

 Para conocer el número de oxidación del metal, hay que tener en cuenta que éste coincide con el número de átomos de hidrógeno, ya que la suma de los números de oxidación debe ser cero.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnH(_2)</td>
<td>dihidruro de estaño</td>
<td>hidruro de estaño(II)</td>
</tr>
<tr>
<td>SnH(_4)</td>
<td>tetrahidruro de estaño</td>
<td>hidruro de estaño(IV)</td>
</tr>
<tr>
<td>LiH</td>
<td>hidruro de litio</td>
<td>hidruro de litio</td>
</tr>
<tr>
<td>ZnH(_2)</td>
<td>dihidruro de cinc o hidruro de cinc</td>
<td>hidruro de cinc</td>
</tr>
</tbody>
</table>

- **Combinaciones del hidrógeno con los no-metales.**

 Se nombran de la misma forma que los hidruros metálicos. Así, de acuerdo con la tabla VI de las recomendaciones de la IUPAC de 2005, el hidrógeno es más electronegativo y actúa con número de oxidación -1.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH(_3)</td>
<td>trihidruro de boro o hidruro de boro</td>
<td>hidruro de boro</td>
</tr>
<tr>
<td>PH(_3)</td>
<td>trihidruro de fósforo</td>
<td>hidruro de fósforo(III)</td>
</tr>
<tr>
<td>PH(_5)</td>
<td>pentahidruro de fósforo</td>
<td>hidruro de fósforo(V)</td>
</tr>
</tbody>
</table>
Otra forma de nombrar estos compuestos está basada en los denominados “hidruros padres o progenitores”.

<table>
<thead>
<tr>
<th>grupo 13</th>
<th>grupo14</th>
<th>grupo 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH₃</td>
<td>borano</td>
<td>CH₄</td>
</tr>
<tr>
<td>AlH₃</td>
<td>alumano</td>
<td>SiH₄</td>
</tr>
<tr>
<td>GaH₃</td>
<td>galano</td>
<td>GeH₄</td>
</tr>
<tr>
<td>InH₃</td>
<td>indigano</td>
<td>SnH₄</td>
</tr>
<tr>
<td>TIH₃</td>
<td>talano</td>
<td>PbH₄</td>
</tr>
</tbody>
</table>

Se admiten los nombres comunes de amoniaco para el NH₃ y de agua para el H₂O; pero dejan de ser aceptados los nombres comunes de fosfina (PH₃), arsina (AsH₃) y estibina (SbH₃), que deben de ir abandonándose.

Combinaciones del hidrógeno con los no metales de los grupos 16 y 17 (HIDRÁCIDOS)

En estos casos, el hidrógeno es el elemento menos electronegativo y actúa con número de oxidación +1.

Los halógenos o los anfígenos, son los elementos más electronegativos, actuando con números de oxidación -1 y -2, respectivamente.

Las disoluciones acuosas de estos compuestos presentan carácter ácido (hidrácidos) y se pueden nombrar como “ácido” seguido de la raíz del elemento que se combina con el hidrógeno con el sufijo “-hídrico”.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nomenclatura estequiométrica</th>
<th>En disolución acuosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>fluoruro de hidrógeno</td>
<td>ácido fluorhídrico</td>
</tr>
<tr>
<td>HCl</td>
<td>cloruro de hidrógeno</td>
<td>ácido clorhídrico</td>
</tr>
<tr>
<td>HBr</td>
<td>bromuro de hidrógeno</td>
<td>ácido bromhídrico</td>
</tr>
<tr>
<td>HI</td>
<td>yoduro de hidrógeno</td>
<td>ácido yodhídrico</td>
</tr>
<tr>
<td>H₂S</td>
<td>sulfuro de hidrógeno o sulfuro de dihidrógeno</td>
<td>ácido sulfhídrico</td>
</tr>
<tr>
<td>H₂Se</td>
<td>seleniuro de hidrógeno o seleniuro de dihidrógeno</td>
<td>ácido selenhídrico</td>
</tr>
<tr>
<td>H₂Te</td>
<td>telururo de hidrógeno o telururo de dihidrógeno</td>
<td>ácido telurhídrico</td>
</tr>
<tr>
<td>*HCN</td>
<td>cianuro de hidrógeno</td>
<td>ácido cianhídrico</td>
</tr>
</tbody>
</table>

El último compuesto de la tabla anterior está formado por tres elementos. Se ha incluido debido a que sus disoluciones acuosas son ácidas (hidrácido). Está formado por el ion cianuro, CN⁻, y el ion hidrógeno, H⁺.
3.3. Combinaciones binarias del oxígeno.

- **Óxidos**

Se denominan así a las combinaciones del oxígeno con otro elemento, metálico o no metálico, a excepción de los halógenos.

En estos compuestos, el número de oxidación del oxígeno es -2, mientras que el otro elemento actúa con número de oxidación positivo.

Si se quiere escribir la fórmula, se intercambian los números de oxidación y se colocan como subíndice del otro elemento, escribiéndose el oxígeno en segundo lugar.

En cambio, el oxígeno se nombra en primer lugar como óxido.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeO</td>
<td>monóxido de hierro u óxido de hierro</td>
<td>óxido de hierro(II)</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>tríxido de dihierro</td>
<td>óxido de hierro(III)</td>
</tr>
<tr>
<td>K₂O</td>
<td>óxido de dipotasio u óxido de potasio</td>
<td>óxido de potasio</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>tríxido de dialuminio u óxido de aluminio</td>
<td>óxido de aluminio</td>
</tr>
<tr>
<td>Cu₂O</td>
<td>monóxido de dicobre u óxido de dicobre</td>
<td>óxido de cobre(I)</td>
</tr>
<tr>
<td>CuO</td>
<td>monóxido de cobre u óxido de cobre</td>
<td>óxido de cobre(II)</td>
</tr>
<tr>
<td>CdO</td>
<td>óxido de cadmio</td>
<td>óxido de cadmio</td>
</tr>
<tr>
<td>MgO</td>
<td>óxido de magnesio</td>
<td>óxido de magnesio</td>
</tr>
<tr>
<td>CO</td>
<td>monóxido de carbono u óxido de carbono</td>
<td>óxido de carbono(II)</td>
</tr>
<tr>
<td>CO₂</td>
<td>dióxido de carbono</td>
<td>óxido de carbono(IV)</td>
</tr>
<tr>
<td>N₂O</td>
<td>monóxido de dinitrógeno u óxido de dinitrógeno</td>
<td>óxido de nitrógeno(I)</td>
</tr>
<tr>
<td>NO</td>
<td>monóxido de nitrógeno u óxido de nitrógeno</td>
<td>óxido de nitrógeno(II)</td>
</tr>
<tr>
<td>NO₂</td>
<td>dióxido de nitrógeno</td>
<td>óxido de nitrógeno(IV)</td>
</tr>
</tbody>
</table>

Anteriormente a las recomendaciones de 2005 de la IUPAC, la secuencia de los elementos era diferente a la establecida en la tabla VI. Antes, el oxígeno era el segundo elemento, después del flúor, por lo que las combinaciones del oxígeno con cloro, bromo, yodo y astato, también eran nombradas como óxidos.

En el Libro Rojo de las recomendaciones de 2005 de la IUPAC se puede leer (IR-1.6.3):

“En la nomenclatura de Química Inorgánica, IUPAC Recomendaciones de 1990 (Ref. 11), la posición del oxígeno en ciertas secuencias de elementos fue tratada como una excepción. Estas excepciones han sido eliminadas y la secuencia de elementos de la Tabla VI es ahora estrictamente respetada. En particular, el oxígeno es tratado como el componente electropositivo con respecto a cualquier halógeno para la construcción de
Los nombres según el sistema en el que se indica la composición (sección IR-5.2) y las fórmulas correspondientes (Sección de IR-4.4.3) para los compuestos binarios. Esto se traduce en, por ejemplo, la fórmula O_2Cl y el nombre cloruro de dioxígeno en lugar de la fórmula ClO_2 y el nombre dióxido de cloro."

Debido a que se han nombrado como óxidos durante mucho tiempo, se seguirán encontrando de ese modo, hasta que se vaya imponiendo la nueva recomendación. A continuación se dan algunos ejemplos de esto:

<table>
<thead>
<tr>
<th>Antes</th>
<th>Recomendaciones 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fórmula</td>
<td>Nombre</td>
</tr>
<tr>
<td>Cl_2O</td>
<td>óxido de dicloro</td>
</tr>
<tr>
<td>ClO_2</td>
<td>dióxido de cloro</td>
</tr>
<tr>
<td>Br_2O_5</td>
<td>pentaóxido de dibromo</td>
</tr>
</tbody>
</table>

El compuesto OF_2 se sigue llamando de la misma manera: difluoruro de oxígeno

- **Peróxidos**
 Son combinaciones del anión peróxido, O_2^{2-}, con un elemento metálico o no metálico. El anión peróxido también puede ser nombrado como dióxido(2-)

 En estos compuestos el oxígeno actúa con número de oxidación -1 y **no puede simplificarse el subíndice dos**, que indica que hay dos oxígenos unidos, cuando se formule.

 Se puede usar la nomenclatura estequiométrica de igual manera que con los óxidos. En el caso del uso del número de oxidación se nombrarían como peróxidos del elemento electropositivo, indicando su número de oxidación entre paréntesis, si tiene varios.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na_2O_2</td>
<td>dióxido de disodio</td>
<td>peróxido de sodio</td>
</tr>
<tr>
<td>BaO_2</td>
<td>dióxido de bario</td>
<td>peróxido de bario</td>
</tr>
<tr>
<td>CuO_2</td>
<td>dióxido de cobre</td>
<td>peróxido de cobre (II)</td>
</tr>
<tr>
<td>* H_2O_2</td>
<td>dióxido de dihidrógeno</td>
<td>peróxido de hidrógeno</td>
</tr>
</tbody>
</table>

Para el compuesto H_2O_2, la IUPAC acepta el nombre común de agua oxigenada.
3.4. Otras combinaciones binarias

- **Combinaciones de metal con no metal (sales binarias)**

 En la fórmula aparecerá en primer lugar el metal, ya que se trata del elemento menos electronegativo, y, a continuación, el no metal. Los números de oxidación de los elementos se intercambian como subíndice y se simplifican cuando sea posible.

 La nomenclatura estequiométrica es la más usada en estos casos. En ella se nombra en primer lugar el elemento no metálico con la terminación “-uro”, a continuación se nombra el metal. Según el sistema empleado, se usan los prefijos multiplicadores o los números de oxidación del elemento metálico cuando sea necesario.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaBr</td>
<td>bromuro de sodio</td>
<td>bromuro de sodio</td>
</tr>
<tr>
<td>FeCl₂</td>
<td>dicloruro de hierro</td>
<td>cloruro de hierro(II)</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>tricloruro de hierro</td>
<td>cloruro de hierro(III)</td>
</tr>
<tr>
<td>Ag₂S</td>
<td>sulfuro de diplata o sulfuro de plata</td>
<td>sulfuro de plata</td>
</tr>
<tr>
<td>Al₂Se₃</td>
<td>triseleniuro de dialuminio o seleniuro de aluminio</td>
<td>seleniuro de aluminio</td>
</tr>
<tr>
<td>PtI₄</td>
<td>tetryoduro de platino</td>
<td>yoduro de platino(IV)</td>
</tr>
<tr>
<td>CaF₂</td>
<td>difluoruro de calcio o fluoruro de calcio</td>
<td>fluoruro de calcio</td>
</tr>
<tr>
<td>Na₂Te</td>
<td>telururo de disodio o telururo de sodio</td>
<td>telururo de sodio</td>
</tr>
<tr>
<td>AuI₃</td>
<td>triyoduro de oro</td>
<td>yoduro de oro(III)</td>
</tr>
<tr>
<td>PbBr₂</td>
<td>dibromuro de plomo</td>
<td>bromuro de plomo(II)</td>
</tr>
<tr>
<td>NiS</td>
<td>disulfuro de níquel</td>
<td>sulfuro de níquel(II)</td>
</tr>
<tr>
<td>ScAs</td>
<td>arseniuro de escandio</td>
<td>arseniuro de escandio</td>
</tr>
<tr>
<td>* NH₄Cl</td>
<td>cloruro de amonio</td>
<td>cloruro de amonio</td>
</tr>
<tr>
<td>* KCN</td>
<td>cianuro de postasio</td>
<td>cianuro de potasio</td>
</tr>
</tbody>
</table>

* También se consideran sales los compuestos del ion cianuro con los metales y aquellos que tienen el amonio como catión.

- **Combinaciones de no metal con no metal**

 En estos casos hay que tener presente la secuencia de los elementos indicada en la tabla VI del Libro Rojo con las recomendaciones de 2005 de la IUPAC.

 De acuerdo con ese criterio, en las fórmulas se escribirá en primer lugar el elemento menos electronegativo, seguido por el más electronegativo.
Como es habitual, a la hora de nombrarlos se empieza por el más electronegativo, con la terminación “-uro”, y tras la partícula “de” se nombra al elemento menos electronegativo. Según los casos se utilizarán los prefijos multiplicadores o el número de oxidación, como se observa en los ejemplos:

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF$_6$</td>
<td>hexafluoruro de azufre</td>
<td>fluoruro de azufre(VI)</td>
</tr>
<tr>
<td>PCl$_3$</td>
<td>tricloruro de fósforo</td>
<td>cloruro de fósforo(III)</td>
</tr>
<tr>
<td>PCl$_5$</td>
<td>pentacloruro de fósforo</td>
<td>cloruro de fósforo(V)</td>
</tr>
<tr>
<td>BN</td>
<td>nitruro de boro</td>
<td>nitruro de boro</td>
</tr>
<tr>
<td>ICl$_7$</td>
<td>heptacloruro de yodo</td>
<td>cloruro de yodo(VII)</td>
</tr>
<tr>
<td>As$_2$Se$_5$</td>
<td>pentaseleniuro de diaresénico</td>
<td>seleniuro de arsenico(V)</td>
</tr>
<tr>
<td>CCl$_4$</td>
<td>tetracloruro de carbono</td>
<td>cloruro de carbono(IV)</td>
</tr>
</tbody>
</table>

4. Hidróxidos

Son combinaciones ternarias en las que el anión hidróxido, OH$^-$, se combina con cationes metálicos.

En la fórmula de estos compuestos, el número de iones OH$^-$ coincide con el número de oxidación del catión metálico, para que la suma total de las cargas sea cero. Cuando hay más de un ion hidróxido, éstos se colocan entre paréntesis, indicando que el subíndice se refiere a todo el ion.

Se pueden nombrar mediante la nomenclatura estequiométrica, usando prefijos multiplicadores o mediante el uso del número de oxidación:

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Prefijos multiplicadores</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(OH)$_2$</td>
<td>dihidróxido de calcio o hidróxido de calcio</td>
<td>hidróxido de calcio</td>
</tr>
<tr>
<td>NaOH</td>
<td>monohidróxido de sodio o hidróxido de sodio</td>
<td>hidróxido de sodio</td>
</tr>
<tr>
<td>Sn(OH)$_2$</td>
<td>dihidróxido de estaño</td>
<td>hidróxido de estaño(II)</td>
</tr>
<tr>
<td>Sn(OH)$_4$</td>
<td>tetrahidróxido de estaño</td>
<td>hidróxido de estaño(IV)</td>
</tr>
</tbody>
</table>
5. Oxoácidos

Son ácidos que contienen oxígeno; así, estos compuestos tienen como fórmula general:

\[H_a X_b O_c \]

El hidrógeno actúa con número de oxidación +1 y el oxígeno -2.

\(X, \) es el átomo central. Como tal pueden actuar los elementos no metálicos y algunos metales de transición con sus números de oxidación más altos.

Según las recomendaciones de la IUPAC de 2005, se pueden nombrar de tres formas diferentes: nomenclatura común o clásica, nomenclatura de adición y nomenclatura de hidrógeno, pero de estas dos últimas la más sencilla es la nomenclatura de hidrógeno.

- **Nomenclatura común (tradicional o clásica).**

Para nombrarlos de este modo, es necesario conocer todos los números de oxidación que puede presentar el elemento que actúa como átomo central en la formación de o xoácidos.

Luego, el número de oxidación que presenta en el compuesto concreto que queremos nombrar, se indica mediante sufijo y/o prefijos.

Con esta nomenclatura se pueden nombrar hasta cuatro o xoácidos diferentes para un elemento actuando como átomo central. Los prefijos y sufijos que se usan son:

<table>
<thead>
<tr>
<th>prefijo</th>
<th>sufijo</th>
<th>cuatro</th>
<th>tres</th>
<th>dos</th>
<th>uno</th>
</tr>
</thead>
<tbody>
<tr>
<td>per-</td>
<td>-ico</td>
<td>más alto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ico</td>
<td></td>
<td>segundo</td>
<td>más alto</td>
<td>más alto</td>
<td></td>
</tr>
<tr>
<td>-oso</td>
<td></td>
<td>tercero</td>
<td>intermedio</td>
<td>más bajo</td>
<td></td>
</tr>
<tr>
<td>hipo-</td>
<td>-oso</td>
<td>más bajo</td>
<td>más bajo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Es importante, por tanto, conocer los números de oxidación que pueden presentar los elementos que actúan como átomo central para formar o xoácidos.

Un resumen de dichos números de oxidación se muestra en la siguiente tabla. No obstante, hay que aclarar que algunos de los o xoácidos que podrían formularse con ellos, no tienen existencia real; pudiendo existir las sales correspondientes.
números de oxidación para formar oxoácidos

<table>
<thead>
<tr>
<th>Elementos</th>
<th>hipo-</th>
<th>-oso</th>
<th>-oso</th>
<th>-ico</th>
<th>per-</th>
<th>-ico</th>
</tr>
</thead>
<tbody>
<tr>
<td>halógenos (Cl, Br, I)</td>
<td>+1</td>
<td>+3</td>
<td></td>
<td>+5</td>
<td></td>
<td>+7</td>
</tr>
<tr>
<td>anfígenos (S, Se, Te)</td>
<td>+2</td>
<td>+4</td>
<td></td>
<td>+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nitrogenoideos (N, P, As, Sb)</td>
<td>+1</td>
<td>+3</td>
<td></td>
<td>+5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbonoideos (C, Si)</td>
<td>(+2)*</td>
<td></td>
<td></td>
<td>+4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boro</td>
<td></td>
<td></td>
<td>+3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn*</td>
<td>(+4)*</td>
<td></td>
<td></td>
<td>+6</td>
<td>+7</td>
<td></td>
</tr>
<tr>
<td>Cr, Mo, W</td>
<td></td>
<td></td>
<td></td>
<td>+6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>+5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* En algún ejercicio se ha encontrado el carbono con número de oxidación +2, pero no lo suele presentar en este tipo de compuestos y derivados.

* El manganeso presenta estos dos números de oxidación y al nombrarlos no se sigue el orden indicado en la tabla general, sino el indicado en esta última. En algún texto se han podido encontrar ejemplos con número de oxidación +4, pero no es habitual.

Para nombrarlos, se antepone la palabra “ácido” a la raíz del nombre del elemento con los prefijos y sufijos correspondientes. Por ejemplo:

\[
\text{HClO}_4 \quad \text{ácido perclórico}
\]

prefijo y sufijo que indican que el cloro presenta el mayor número de oxidación: +7

Para calcular el número de oxidación del átomo central se tiene en cuenta que el hidrógeno presenta número de oxidación +1 y el oxígeno -2. Y la carga total del compuesto es cero, ya que se trata de un compuesto neutro. Así, para \(\text{H}_3\text{X}_b\text{O}_c \):

\[
(n^\circ \text{H}) \cdot (+1) + (n^\circ \text{O}) \cdot (-2) + (n^\circ \text{Cl}) \cdot (x) = 0 \quad \rightarrow \quad a - 2 \cdot c + x \cdot b = 0 \quad \rightarrow \quad x = \frac{2 \cdot c - a}{b}
\]

\[
x = \frac{2 \cdot c - a}{b} \quad \Rightarrow \quad x = \frac{2 \cdot 4 - 1}{1} = +7
\]

Al ser el mayor de los cuatro posibles que puede presentar el cloro en los oxoácidos, se usa el prefijo \(\text{per-} \) y el sufijo \(\text{-ico} \).
Prefijos orto- y meta-

En algunos casos, un elemento con un número de oxidación determinado, puede ser el átomo central de dos oxoácidos diferentes, cuya diferencia es el número de moléculas de agua (realmente difieren en el número de átomos de H y O). En estos casos, al oxoácido de mayor contenido de H₂O se le añade el prefijo “orto-” y al de menor “meta-”.

El prefijo “orto” no se ha usado coherentemente en el pasado y ahora la IUPAC recomienda que no se use en los casos de los ácidos bórico, silícico y fosfórico para los que no hay ambigüedad en el nombre sin “orto”. Los únicos casos donde el prefijo “orto” permite distinguir entre dos compuestos diferentes son los ácidos telúrico y peryódico y sus aniones correspondientes.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>Nombre</th>
<th>Fórmula</th>
<th>Nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₃BO₃</td>
<td>ácido bórico</td>
<td>HBO₂</td>
<td>ácido metabórico</td>
</tr>
<tr>
<td>H₄SiO₄</td>
<td>ácido silícico</td>
<td>H₂SiO₃</td>
<td>ácido metasilícico</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>ácido fosfórico</td>
<td>HPO₃</td>
<td>ácido metafosfórico</td>
</tr>
<tr>
<td>H₄TeO₆</td>
<td>ácido ortotelúrico</td>
<td>H₂TeO₄</td>
<td>ácido telúrico</td>
</tr>
<tr>
<td>H₃IO₆</td>
<td>ácido ortoperyódico</td>
<td>HIO₄</td>
<td>ácido peryódico</td>
</tr>
</tbody>
</table>

Oxoácidos con doble número del átomo central (uso del prefijo di-)

Estos compuestos se consideran resultantes de la condensación de dos moléculas de ácido y eliminación de una de agua. Se nombra colocando el prefijo di- delante del nombre del ácido de procedencia. Anteriormente eran nombrados con el prefijo piro- (ya en desuso), ya que se obtenían por calentamiento.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>nombre</th>
<th>fórmula</th>
<th>nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂SO₄</td>
<td>ácido sulfúrico</td>
<td>H₂S₂O₇</td>
<td>ácido disulfúrico</td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>ácido sulfuroso</td>
<td>H₂S₂O₅</td>
<td>ácido disulfuroso</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>ácido fosfórico</td>
<td>H₃P₂O₇</td>
<td>ácido difosfórico</td>
</tr>
<tr>
<td>H₂CrO₄</td>
<td>ácido crómico</td>
<td>H₂Cr₂O₇</td>
<td>ácido dicrómico</td>
</tr>
</tbody>
</table>

Igualmente, se podrían formular y nombrar oxoácidos con un número mayor de átomos del elemento central; en este caso se utilizarían los prefijos de cantidad sucesivos.
• **Nomenclatura de hidrógeno.**

Para los oxoácidos y sus derivados hay una forma alternativa de nomenclatura aceptada por la IUPAC.

Consiste en nombrar, en primer lugar, los hidrógenos que contiene el ácido mediante la palabra “hidrogeno-”, precedida por el prefijo de cantidad. A continuación, sin dejar espacios y entre paréntesis, se nombra el anión según la nomenclatura de adición; es decir, en general, se nombran los oxígenos que tiene y se acaba con la raíz del nombre del átomo central acabado en “-ato”.

Para el H$_2$SO$_4$:

\[
\text{dihidrogeno(tetraoxidosulfato)} \\
\text{H}_2\text{SO}_4
\]
6. Iones.

Los iones son especies con carga (ya sea un átomo o un grupo de átomos).

En la fórmula de los iones monoatómicos, la carga se expresa con un superíndice a la derecha del símbolo del elemento. Su valor se indica con un número seguido del signo correspondiente. Cu$^{2+}$

En los iones poliatómicos, la carga, que se indica igualmente con un superíndice a la derecha del último elemento que forma el ion, corresponde a la suma de los números de oxidación que se atribuye a los elementos que lo constituyen, SO_4^{2-}; es decir, pertenece a todo el ion.

Cuando el valor de la carga es uno, ya sea positiva o negativa, sólo se indica con el signo en la fórmula.

- **Cationes monoatómicos**

Hay dos formas de nombrarlos, basadas en el número de carga o en el número de oxidación.

Uso del número de carga (sistema Ewens–Basset)

Se nombra el elemento y se indica, seguidamente, el número de la carga entre paréntesis.

Uso del número de oxidación (sistema de Stock)

Se nombra el elemento y se indica, seguidamente, el número de oxidación entre paréntesis.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>N. Número de carga</th>
<th>N. Número de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$^{2+}$</td>
<td>hierro(2+)</td>
<td>ion hierro(II)</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>hierro(3+)</td>
<td>ion hierro(III)</td>
</tr>
<tr>
<td>Au$^+$</td>
<td>oro(1+)</td>
<td>ion oro(I)</td>
</tr>
<tr>
<td>Au$^{3+}$</td>
<td>oro(3+)</td>
<td>ion oro(III)</td>
</tr>
<tr>
<td>K$^+$</td>
<td>potasio(1+)</td>
<td>ion potasio</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>magnesio(2+)</td>
<td>ion magnesio</td>
</tr>
<tr>
<td>H$^+$</td>
<td>hidrógeno(1+)</td>
<td>ion hidrógeno</td>
</tr>
</tbody>
</table>
• **Cationes homopoliatómicos**

Se utiliza la nomenclatura estequiométrica, para ello se le añade el número de carga correspondiente al nombre del elemento con el prefijo de cantidad.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>nombre derivado de hidruro “padre”</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_2^+$</td>
<td>dioxígeno(1+)</td>
</tr>
<tr>
<td>Hg$_2^{2+}$</td>
<td>dimercurio(2+)</td>
</tr>
<tr>
<td>H$_3^+$</td>
<td>trihidrógeno(1+)</td>
</tr>
<tr>
<td>S$_4^{2+}$</td>
<td>tetraazufre(2+)</td>
</tr>
<tr>
<td>Bi$_5^{4+}$</td>
<td>pentabismuto(4+)</td>
</tr>
</tbody>
</table>

• **Cationes heteropoliatómicos obtenidos al añadir un H$^+$ a los hidruros “padres”**

El nombre del ion obtenido formalmente al añadir un ion hidrógeno, H$^+$, a un hidruro “padre”, se obtiene cambiando la terminación “-o” por “-io”

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>nombre derivado de hidruro “padre”</th>
<th>nombre común aceptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_3$O$^+$</td>
<td>oxidanio</td>
<td>oxonio *</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>azanio</td>
<td>amonio</td>
</tr>
<tr>
<td>PH$_4^+$</td>
<td>fosfánio</td>
<td></td>
</tr>
</tbody>
</table>

* No se admite el nombre de hidronio

• **Aniones monoatómicos**

Se nombran añadiendo la terminación “-uro” al nombre del elemento, seguido del número de carga correspondiente (sistema Ewens–Basset), si no hay ambigüedad, se puede omitir el número de carga.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>mediante número de carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl$^-$</td>
<td>cloruro(1-) o cloruro</td>
</tr>
<tr>
<td>H$^-$</td>
<td>hidruro(1-) o hidruro</td>
</tr>
<tr>
<td>N$_3^{-}$</td>
<td>nitruro(3-) o nitruro</td>
</tr>
<tr>
<td>As$_3^{-}$</td>
<td>arsenuiro(3-) o arsenuiro</td>
</tr>
<tr>
<td>S$_2^{-}$</td>
<td>sulfuro(2-) o sulfuro</td>
</tr>
<tr>
<td>Se$_3^{-}$</td>
<td>seleniuro(3-) o seleniuro</td>
</tr>
<tr>
<td>O$_2^{-}$</td>
<td>óxido(2-) o óxido</td>
</tr>
<tr>
<td>C$_4^{-}$</td>
<td>carburo(4-) o carburo</td>
</tr>
</tbody>
</table>
• **Aniones homopoliatómicos**

Se utiliza la nomenclatura estequiométrica, para ello se le añade el número de carga correspondiente al nombre del elemento con el prefijo de cantidad y la terminación “-uro”.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>mediante número de carga</th>
<th>nombre común aceptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2^-</td>
<td>dióxido(1-)</td>
<td>superóxido</td>
</tr>
<tr>
<td>O_2^{2-}</td>
<td>dióxido(2-)</td>
<td>peróxido</td>
</tr>
<tr>
<td>O_3^-</td>
<td>trióxido(1-)</td>
<td>ozonido</td>
</tr>
<tr>
<td>I_3^-</td>
<td>triyoduro(1-)</td>
<td>azida</td>
</tr>
<tr>
<td>S_2^{2-}</td>
<td>disulfuro(2-)</td>
<td></td>
</tr>
</tbody>
</table>

• **Aniones derivados de oxoácidos**

Son los iones que resultan por la pérdida de iones hidrógeno, H^+, de un oxoácido.

- **Nomenclatura común o clásica (tradicional)**

Se cambia la terminación “-oso” o “-ico” del oxoácido por “-ito” o “-ato”, respectivamente. Nombrándose como ion o anión, en vez de ácido.

<table>
<thead>
<tr>
<th>en el ácido</th>
<th>número de oxidación del átomo central</th>
<th>en el oxoanión</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefijo</td>
<td>sufijo</td>
<td>prefijo</td>
</tr>
<tr>
<td>per-</td>
<td>-ico</td>
<td>per-</td>
</tr>
<tr>
<td></td>
<td>más alto</td>
<td>-ato</td>
</tr>
<tr>
<td></td>
<td>segundo</td>
<td>-ato</td>
</tr>
<tr>
<td></td>
<td>tercero</td>
<td>-ito</td>
</tr>
<tr>
<td></td>
<td>más bajo</td>
<td>hipo-</td>
</tr>
<tr>
<td>hipo-</td>
<td>-oso</td>
<td>-ito</td>
</tr>
</tbody>
</table>

HClO_4 ácido **perclórico**
ClO_4^- ion **perclorato**

prefijo y sufijo que indican que el cloro presenta el mayor número de oxidación: +7
Como hay oxoácidos con varios hidrógenos, puede ocurrir que el anión derivado se forme por pérdida de algunos, pero no de todos los hidrógenos. En este caso, se antepone el prefijo hidrogeno-, dihidrogeno-, etc..., según el caso, al nombre del anión.

\[
\begin{align*}
\text{SO}_4^{2-} & \quad \text{ion sulfato} \\
\text{H}_2\text{SO}_4 & \quad \text{ácido sulfúrico} \\
\text{HSO}_4^- & \quad \text{ion hidrogenosulfato}
\end{align*}
\]

- **Nomenclatura sistemática**

Se nombran los elementos, indicando el número de cada uno con los prefijos de cantidad. Sería como eliminar los hidrógenos de la nomenclatura de hidrógeno de los oxoácidos. Finalmente, se indica la carga del anión mediante el número de carga (sistema Ewens–Basset).

(prefijo de cantidad)(oxido)(prefijo de cantidad)(átomo central acabado en -ato)(carga del anión)

\[
\begin{align*}
\text{SO}_4^{2-} & \quad \text{tetraoxidosulfato}(2-) \\
\text{Cr}_2\text{O}_7^{2-} & \quad \text{heptaoxidodicromato}(2-) \\
\text{S}_2\text{O}_7^{2-} & \quad \text{heptaoxididisulfato}(2-)
\end{align*}
\]

Nomenclatura de hidrógeno

Para los aniones que contienen hidrógeno se puede usar esta nomenclatura descrita para los ácidos, indicando la carga del anión al final del nombre entre paréntesis.

\[
\begin{align*}
\text{HSO}_4^{-} & \quad \text{hidrogeno(tetraoxidosulfato)}(1-)
\end{align*}
\]
7. Oxisales

Resultan de la combinación de un anión de oxoácido con un catión. En estos casos la suma total de las cargas es cero, lo que condiciona el número de cada ion en el compuesto. Cuando se repite un ion formado por varios átomos, se sitúa entre paréntesis en la fórmula, con el subíndice correspondiente.

En general, se nombran siguiendo la estructura de los compuestos binarios (formados por un anión y por un catión).

- **Nomenclatura común o clásica (tradicional).**

 Se nombra el oxoánion y, tras la palabra “de”, se indica el nombre del catión, indicando entre paréntesis el número de carga o el número de oxidación, si es necesario.

 Cuando no hay ambigüedad sobre la carga de un catión, debido a que está formado por un elemento que presenta su único y habitual estado de oxidación, no se indica el número de carga.

\[
\begin{align*}
\text{ClO}_4^- \quad \text{ion perclorato} & \quad \text{NaClO}_4 \quad \text{perclorato de sodio(1+)} \\
\text{Na}^+ \quad \text{ion sodio(1+)}
\end{align*}
\]

Se combina un ion sodio con uno perclorato para que la sal resultante sea eléctricamente neutra.
• Nomenclatura de composición o estequiométrica

Se nombra en primer lugar el anión de oxoácido (no se indica la carga) y, tras la palabra “de”, se nombra el catión. La proporción de ambos constituyentes se indica mediante los prefijos multiplicativos.

Cuando el nombre de un constituyente comienza por un prefijo multiplicativo o para evitar ambigüedades, se usan los prefijos de cantidad alternativos (bis, tris, tetrakis, pentakis, etc...), colocando el nombre correspondiente entre paréntesis (esto es lo habitual con el oxoanión).

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>oxoanión</th>
<th>nombre oxoanión</th>
<th>catión</th>
<th>nombre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(ClO₃)₂</td>
<td>ClO₃⁻</td>
<td>trioxidoclorato(1⁻)</td>
<td>Fe²⁺</td>
<td>bis(trioxidoclorato) de hierro</td>
</tr>
<tr>
<td>Fe(ClO₃)₃</td>
<td>ClO₃⁻</td>
<td>trioxidoclorato(1⁻)</td>
<td>Fe³⁺</td>
<td>tris(trioxidoclorato) de hierro</td>
</tr>
<tr>
<td>Au₂(SO₄)₃</td>
<td>SO₄²⁻</td>
<td>tetraoxidosulfato(2⁻)</td>
<td>Au³⁺</td>
<td>tris(tetraoxidosulfato) de dioro</td>
</tr>
<tr>
<td>NaNO₂</td>
<td>NO₂⁻</td>
<td>dioxidonitrato(1⁻)</td>
<td>Na⁺</td>
<td>dioxidonitrato de sodio</td>
</tr>
<tr>
<td>KNO₃</td>
<td>NO₃⁻</td>
<td>trioxidonitrato(1⁻)</td>
<td>K⁺</td>
<td>trioxidonitrato de potasio</td>
</tr>
<tr>
<td>AlPO₄</td>
<td>PO₄³⁻</td>
<td>tetraoxidofosfato(3⁻)</td>
<td>Al³⁺</td>
<td>tetraoxidofosfato de aluminio</td>
</tr>
<tr>
<td>(NH₄)₂CO₃</td>
<td>CO₃²⁻</td>
<td>trioxidocarbonato(2⁻)</td>
<td>NH₄⁺</td>
<td>trioxidocarbonato de diamonio</td>
</tr>
<tr>
<td>K₂Cr₂O₇</td>
<td>Cr₂O₇²⁻</td>
<td>heptaoxidadicromato(2⁻)</td>
<td>K⁺</td>
<td>heptaoxidadicromato de dipotasio</td>
</tr>
<tr>
<td>Ca(PO₃)₂</td>
<td>PO₃⁻</td>
<td>trioxidofosfato(1⁻)</td>
<td>Ca²⁺</td>
<td>bis(trioxidofosfato) de calcio</td>
</tr>
<tr>
<td>RbMnO₄</td>
<td>MnO₄⁻</td>
<td>tetraoxidomanganato(1⁻)</td>
<td>Rb⁺</td>
<td>tetraoxidomanganato de rubidio</td>
</tr>
<tr>
<td>Rb₂MnO₄</td>
<td>MnO₄²⁻</td>
<td>tetraoxidomanganato(2⁻)</td>
<td>Rb⁺</td>
<td>tetraoxidomanganato de dirubidio</td>
</tr>
</tbody>
</table>

8. Sales ácidas.

8.1. Oxisales ácidas

Como se ha comentado, algunos oxoácidos están compuestos por varios hidrógenos; si éstos pierden algunos hidrógenos, pero no todos, se forman aniones que contienen hidrógeno. Estos aniones cuando se combinan con cationes dan especies neutras llamadas sales (oxisales) ácidas.

• Nomenclatura común o clásica (tradicional)

Se nombra el anión según esta nomenclatura y, tras la palabra “de”, se indica el nombre del catión, indicando entre paréntesis el número de carga o el número de oxidación, si es necesario.

\[
\text{HSO}_4^- \quad \text{ion hidrogenosulfato} \quad \{ \quad \text{NaHSO}_4 \quad \text{hidrogenosulfato de sodio}(1+) \quad \}\n\]

\[
\text{Na}^+ \quad \text{ion sodio}(1+) \quad \{ \quad \text{NaHSO}_4 \quad \text{hidrogenosulfato de sodio} \quad \}\n\]
Se combina un ion sodio con uno hidrogenosulfato para que la sal resultante sea eléctricamente neutra.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>oxoanión</th>
<th>nombre ion...</th>
<th>catión</th>
<th>nombre usando nº oxidación del catión</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuHSO₄</td>
<td>HSO₄⁻</td>
<td>hidrogenosulfato</td>
<td>Cu⁺</td>
<td>hidrogenosulfato de cobre(I)</td>
</tr>
<tr>
<td>Cu(HSO₄)₂</td>
<td>HSO₄⁻</td>
<td>hidrogenosulfato</td>
<td>Cu²⁺</td>
<td>hidrogenosulfato de cobre(II)</td>
</tr>
<tr>
<td>LiHSO₃</td>
<td>HSO₃⁻</td>
<td>hidrogenosulfito</td>
<td>Li⁺</td>
<td>hidrogenosulfito de litio</td>
</tr>
<tr>
<td>NH₄HCO₃</td>
<td>HCO₃⁻</td>
<td>hidrogenocarbonato</td>
<td>NH₄⁺</td>
<td>hidrogenocarbonato de amonio</td>
</tr>
<tr>
<td>CaHPO₄</td>
<td>HPO₄²⁻</td>
<td>hidrogenofosfato</td>
<td>Ca²⁺</td>
<td>hidrogenofosfato de calcio</td>
</tr>
<tr>
<td>Mg(H₂PO₄)₂</td>
<td>H₂PO₄⁻</td>
<td>dihidrogenofosfato</td>
<td>Mg²⁺</td>
<td>dihidrogenofosfato de magnesio</td>
</tr>
<tr>
<td>Al₂(HPO₃)₃</td>
<td>HPO₃²⁻</td>
<td>hidrogenofosfito</td>
<td>Al³⁺</td>
<td>hidrogenofosfito de aluminio</td>
</tr>
<tr>
<td>Fe(H₂PO₃)₃</td>
<td>H₂PO₃⁻</td>
<td>dihidrogenofosfito</td>
<td>Fe³⁺</td>
<td>dihidrogenofosfito de hierro(III)</td>
</tr>
<tr>
<td>FeHBO₃</td>
<td>HBO₃²⁻</td>
<td>hidrogenoborato</td>
<td>Fe²⁺</td>
<td>hidrogenoborato de hierro(II)</td>
</tr>
<tr>
<td>KH₂BO₃</td>
<td>H₂BO₃⁻</td>
<td>dihidrogenoborato</td>
<td>K⁺</td>
<td>dihidrogenoborato de potasio</td>
</tr>
<tr>
<td>Cd(HS₂O₇)₂</td>
<td>HS₂O₇⁻</td>
<td>hidrogenodisulfato</td>
<td>Cd²⁺</td>
<td>hidrogenodisulfato de cadmio</td>
</tr>
<tr>
<td>Na₂H₂P₂O₇</td>
<td>H₂P₂O₇⁻²</td>
<td>dihidrogenodifosfato</td>
<td>Na⁺</td>
<td>dihidrogenodifosfato de sodio</td>
</tr>
</tbody>
</table>

- **Nomenclatura estequiométrica**

 Se nombra en primer lugar el anión de oxoácido (no se indica la carga) y, tras la palabra “de”, se nombra el catión. La proporción de ambos constituyentes se indica mediante los prefijos multiplicativos.

 Cuando el nombre de un constituyente comienza por un prefijo multiplicativo o para evitar ambigüedades, se usan los prefijos de cantidad alternativos (bis, tris, tetrakis, pentakis, etc...), esto es lo habitual con el anión derivado del oxoácido. Además, como el nombre del anión lleva ya paréntesis, el nombre se coloca entre corchetes al utilizar los prefijos alternativos de cantidad.
8.2. Sales ácidas derivadas de hidrácidos.

Los hidrácidos que contienen dos átomos de hidrógeno en su fórmula, pueden perder un H⁺ y dar lugar a la formación de un anión que contiene hidrógeno.

Estos aniones se nombran anteponiendo la palabra “hidrogeno” al nombre del elemento que lo acompaña acabado en “-uro”.

Cuando estos aniones se combinan con cationes, generalmente metálicos, originan sales ácidas y se nombran de acuerdo a las reglas de los compuestos binarios:

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>anión</th>
<th>nombre ion</th>
<th>Nomenclatura estequiométrica</th>
<th>N. usando nº de oxidación</th>
</tr>
</thead>
<tbody>
<tr>
<td>KHS</td>
<td>HS</td>
<td>hidrogenosulfuro</td>
<td>hidrogenosulfuro de potasio</td>
<td>hidrogenosulfuro de potasio</td>
</tr>
<tr>
<td>Ca(HSe)₂</td>
<td>HSe</td>
<td>hidrogenoseleniuro</td>
<td>bis(hidrogenoseleniuro) de calcio</td>
<td>hidrogenoseleniuro de calcio</td>
</tr>
<tr>
<td>Cu(HTe)₂</td>
<td>HTe</td>
<td>hidrogenotelururo</td>
<td>bis(hidrogenotelururo) de cobre(II)</td>
<td>hidrogenotelururo de cobre(II)</td>
</tr>
<tr>
<td>NH₄HS</td>
<td>HS</td>
<td>hidrogenosulfuro</td>
<td>hidrogenosulfuro de amonio</td>
<td>hidrogenosulfuro de amonio</td>
</tr>
</tbody>
</table>
9.1. Tioácidoss y derivados.

Los tioácidos se pueden considerar como derivados de los oxoácidos en los que alguno o algunos de los átomos de oxígeno que se unen al átomo central, son sustituidos por átomos de S.

- **Nomenclatura tradicional**

 En la nomenclatura común se añade el prefijo "tio-" delante del oxoácido del que se considera que deriva.

 Con el prefijo de cantidad habitual (di-, tri-, etc.) se indica el número de átomos de O que se han sustituido.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>común (ácido ...)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S₂O₃</td>
<td>tiosulfúrico</td>
</tr>
<tr>
<td>H₂S₂O₂</td>
<td>tiosulfito</td>
</tr>
<tr>
<td>H₂PO₃S</td>
<td>tiofosfórico</td>
</tr>
</tbody>
</table>

Por pérdida de los hidrógenos se obtienen aniones que pueden combinarse formando sales:

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>común</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₂O₅²⁻</td>
<td>anión tiosulfato</td>
</tr>
<tr>
<td>S₂O₄²⁻</td>
<td>anión tiosulfito</td>
</tr>
<tr>
<td>PO₃S³⁻</td>
<td>anión tiofosfato</td>
</tr>
<tr>
<td>Na₂S₂O₅</td>
<td>tiosulfito de sodio</td>
</tr>
<tr>
<td>FeS₂O₃</td>
<td>tiosulfato de hierro(II)</td>
</tr>
<tr>
<td>K₃PO₃S</td>
<td>tiofostato de potasio</td>
</tr>
</tbody>
</table>
9.2. Estados o números de oxidación.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>-1</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>Li</td>
<td>+2</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>Na</td>
<td>+2</td>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>K</td>
<td>+2</td>
<td>Ca</td>
<td>+3</td>
<td>Sc</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+1</td>
<td>Rb</td>
<td>+2</td>
<td>Sr</td>
<td>+3</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>Cs</td>
<td>+2</td>
<td>Ba</td>
<td>+3</td>
<td>La</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>+1</td>
<td>Fr</td>
<td>+2</td>
<td>Ra</td>
<td>+3</td>
<td>Ac</td>
<td></td>
</tr>
</tbody>
</table>

ESTADOS DE OXIDACIÓN DE LOS ELEMENTOS QUÍMICOS

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>Li</td>
<td>+2</td>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>Na</td>
<td>+2</td>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>K</td>
<td>+2</td>
<td>Ca</td>
<td>+3</td>
<td>Sc</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+1</td>
<td>Rb</td>
<td>+2</td>
<td>Sr</td>
<td>+3</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+1</td>
<td>Cs</td>
<td>+2</td>
<td>Ba</td>
<td>+3</td>
<td>La</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>Fr</td>
<td>+2</td>
<td>Ra</td>
<td>+3</td>
<td>Ac</td>
<td></td>
</tr>
</tbody>
</table>

He | **F** | **Ne** | **Ar** | **Kr** | **Xe** | **Rn**
9.3. Oxoácidos.

<table>
<thead>
<tr>
<th>Fórmula</th>
<th>nº ox.</th>
<th>clásica (ácido ….)</th>
<th>de hidrógeno</th>
</tr>
</thead>
<tbody>
<tr>
<td>HClO₄</td>
<td>+7</td>
<td>perclórico</td>
<td>hidrogeno(tetraoxidoclorato)</td>
</tr>
<tr>
<td>HClO₃</td>
<td>+5</td>
<td>clórico</td>
<td>hidrogeno(trioxidoclorato)</td>
</tr>
<tr>
<td>HClO₂</td>
<td>+3</td>
<td>cloroso</td>
<td>hidrogeno(dioxidoclorato)</td>
</tr>
<tr>
<td>HClO</td>
<td>+1</td>
<td>hipocloroso</td>
<td>hidrogeno(oxooclorato)</td>
</tr>
<tr>
<td>HIO₄</td>
<td>+7</td>
<td>peryódico</td>
<td>hidrogeno(tetraoxidoiodato)</td>
</tr>
<tr>
<td>H₂IO₆</td>
<td>+7</td>
<td>ortoperyódico</td>
<td>pentahidrogeno(hexaoxidoiodato)</td>
</tr>
<tr>
<td>HIO₃</td>
<td>+5</td>
<td>yódico</td>
<td>hidrogeno(trixoidoiodato)</td>
</tr>
<tr>
<td>HIO₂</td>
<td>+3</td>
<td>yodoso</td>
<td>hidrogeno(dixoidoiodato)</td>
</tr>
<tr>
<td>HIO</td>
<td>+1</td>
<td>hipoyodoso</td>
<td>hidrogeno(oxidoiodato)</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>+6</td>
<td>sulfúrico</td>
<td>dihidrogeno(tetraoxidossulfato)</td>
</tr>
<tr>
<td>H₂S₂O₇</td>
<td>+6</td>
<td>disulfúrico</td>
<td>dihidrogeno(heptaoxidosulfato)</td>
</tr>
<tr>
<td>H₂SO₃</td>
<td>+4</td>
<td>sulfuroso</td>
<td>dihidrogeno(triaxidosulfato)</td>
</tr>
<tr>
<td>H₂S₂O₅</td>
<td>+4</td>
<td>disulfuroso</td>
<td>dihidrogeno(pentaoxidosulfato)</td>
</tr>
<tr>
<td>H₂TeO₄</td>
<td>+6</td>
<td>telúrico</td>
<td>dihidrogeno(tetraaxidotelurato)</td>
</tr>
<tr>
<td>H₂TeO₆</td>
<td>+6</td>
<td>ortotelúrico</td>
<td>hexahidrogeno(hexaoxidotelurato)</td>
</tr>
<tr>
<td>H₂TeO₃</td>
<td>+4</td>
<td>teluroso</td>
<td>dihidrogeno(triaxidotelurato)</td>
</tr>
<tr>
<td>H₂SeO₄</td>
<td>+6</td>
<td>selénico</td>
<td>dihidrogeno(tetraoxidoseleniato)</td>
</tr>
<tr>
<td>H₂SeO₃</td>
<td>+4</td>
<td>selenioso</td>
<td>dihidrogeno(triaxidoseleniato)</td>
</tr>
<tr>
<td>HNO₃</td>
<td>+5</td>
<td>nítrico</td>
<td>hidrogeno(trixoiconitrato)</td>
</tr>
<tr>
<td>HNO₂</td>
<td>+3</td>
<td>nitroso</td>
<td>hidrogeno(dixoiconitrato)</td>
</tr>
<tr>
<td>H₂N₂O₅</td>
<td>+1</td>
<td>hiponitroso*</td>
<td>dihidrogeno(dixoiconitrato)</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>+5</td>
<td>fosfórico</td>
<td>trihidrogeno(tetraoxidofosfato)</td>
</tr>
<tr>
<td>HPO₃</td>
<td>+5</td>
<td>metafosfórico</td>
<td>hidrogeno(trioxidofosfato)</td>
</tr>
<tr>
<td>Formato</td>
<td>Estado</td>
<td>Nombre</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>H_3PO_4</td>
<td>+3</td>
<td>fosforoso</td>
<td></td>
</tr>
<tr>
<td>HPO_2</td>
<td>+3</td>
<td>metafósforo</td>
<td></td>
</tr>
<tr>
<td>$\text{H}_3\text{P}_2\text{O}_7$</td>
<td>+5</td>
<td>difosfórico</td>
<td></td>
</tr>
<tr>
<td>H_3AsO_4</td>
<td>+5</td>
<td>arsênico</td>
<td></td>
</tr>
<tr>
<td>H_3AsO_3</td>
<td>+3</td>
<td>arsenioso</td>
<td></td>
</tr>
<tr>
<td>H_3SbO_4</td>
<td>+5</td>
<td>antimónico</td>
<td></td>
</tr>
<tr>
<td>H_3SbO_3</td>
<td>+3</td>
<td>antimonioso</td>
<td></td>
</tr>
<tr>
<td>H_2CO_3</td>
<td>+4</td>
<td>carbónico</td>
<td></td>
</tr>
<tr>
<td>H_4SiO_4</td>
<td>+4</td>
<td>silício</td>
<td></td>
</tr>
<tr>
<td>H_3SiO_3</td>
<td>+4</td>
<td>metasilício</td>
<td></td>
</tr>
<tr>
<td>$\text{H}_6\text{Si}_2\text{O}_7$</td>
<td>+4</td>
<td>disilício</td>
<td></td>
</tr>
<tr>
<td>H_3BO_3</td>
<td>+3</td>
<td>bórico</td>
<td></td>
</tr>
<tr>
<td>HBO_2</td>
<td>+3</td>
<td>metabórico</td>
<td></td>
</tr>
</tbody>
</table>